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ABSTRACT 

We prove amenabili ty for a broad class of equivalence relations which have 

trees associated to the equivalence classes. The proof makes crucial use of 

percolation on trees. We also discuss related concepts and results, including 

amenabili ty of automorphism groups. A second main  result is tha t  no discrete 

subgroup of the automorphism group of a tree is isomorphic to the fundamental  

group of any closed manifold M admitt ing a nontrivial  connection-preserving, 

volume-preserving action of a noncompact,  simply connected, almost simple 

Lie group having Kazhdan 's  property (T). The technique of proof also shows 

tha t  M does not admit  a hyperbolic structure.  

1. I n t r o d u c t i o n  

Amenability is a notion originating in analysis on groups which has come to find 

broad applicability and relevance [P]. One way to think of amenability is as a 

tool of classification. Another is as a notion of smallness; e.g., if a group is finite, 

compact, or abelian, then it is amenable. In Section 2, we review the (sometimes 

multiple) definitions of amenability for groups, group actions, measured equiva- 

lence relations, Bore1 equivalence relations, and classes of graphs. Whereas for 
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groups, amenability can be defined equivalently in terms of invariant means or 

in terms of fixed points, for group actions these definitions split into distinct 

and complementary notions. Both have been called "amenable" before; we pro- 

pose to call one "co-amenable." Proposition 2.4 shows one way in which these 

notions are complementary. The notion of amenability for classes of graphs (or 

other structures) is a very recent one due to Kechris [Kec]. We find it particu- 

larly appealing since it formalizes whether "canonical" choices and constructions 

are possible. 

If an equivalence relation has a graph associated to each equivalence class, 

then amenability of the equivalence relation is related to the geometry of the 

graphs [A]. In particular, if these graphs are trees which are small in some sense, 

then we obtain amenability [A], [DK]. In Theorem 4.4 and Corollary 4.5, we 

extend all previous results in this direction by showing that the class of trees of 

branching number I [L1] - i.e., trees whose boundary has Hausdorff dimension 0 

- is amenable. This is accomplished by means of percolation processes on such 

trees, which is the first connection of which we are aware between percolation 

and amenability. It is surprising that although the class of trees of branching 

number 1 can be defined via random walks and although Kesten [Kesl, Kes2] 

and others since have shown the close tie between random walks and amenability, 

we were able to find no proof of our result which used random walks. 

Before demonstrating this result, we present a simple proof of a theorem of 

Nebbia [N] characterizing amenable automorphism groups of trees and of a par- 
tial extension due to Woess [Woe] for graphs. 

A property in some ways complementary to amenability for groups is that of 

Kazhdan's property (T). Our second main result concerns manifolds with such 
fundamental groups and their possible actions on trees. Namely, let G be a 

connected, noncompact, almost simple Lie group with finite fundamental group. 

Suppose that G has property (T). (All definitions wiU be recalled in Section 

5.) Let M be a closed, real analytic manifold with a real analytic connection 

and a smooth volume. Assume that G acts real analytically on M preserving 

the connection and volume and that the action is nontrivial. Let I" denote the 

fundamental group of M. Then 1" cannot act properly on any tree. By [S, Section 

4, Theorem 7], this extends a theorem of Zimmer [Z4, Theorem 7.1] that F is 

not isomorphic to the amalgam of two finite groups over a common subgroup. 

We are grateful to Alexander Kechris for discussions of amenability and meta- 

mathematics. 
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2. G e n e r a l i t i e s  o n  A m e n a b i l i t y  

If G is a locally compact group, we denote by pa  a right Haar measure on G and 

L°°(G) := Lee(G, pG; R). Here and throughout this paper, all Banach spaces 

will be real. If A is a linear subspace of L~(G) containing the constant function 

1, we say that  a linear functional m on A is a m e a n  if m(1)  = 1 and m > 0 (i.e., 

0 <_ f E A =~ re(f) > 0). If g E G and f : G ~ R,  we write Rgf  : x ~ f(xg).  
We say that  a mean m on A is i nva r i an t  if m(R~f)  = re(f) for all f E A and 

g E G .  

Definition: A locally compact group G is a m e n a b l e  if there is an invariant mean 

on L°°(G). 

There are many properties equivalent to amenability, some of which we recall 

now. Denote the space of bounded continuous functions on G by Cb(G). 

PROPOSITION 2.1: A locally compact group G is amenable iff there is an in- 
variant mean on Cb(G). 

See [P, Corollary 1.10] for a proof. The easiest way to see that  amenability 

is related to the growth of the group, as alluded to in the introduction, is via 

F¢lner's Theorem [P, Theorem 4.10]: 

THEOREM 2.2: A locally compact group G is amenable/f l ' for  every ~ > 0 and 

every compact C C G, there is a nonnall compact K C_ G such that 

Vg E C pG(KgAK) < ~. 
pG(K) 

We say that  G has s u b e x p o n e n t i a l  g r o w t h  if every compact neighborhood 

K of the identity satisfies 

l iminf  PG(K"+I) = 1. 
, , - o o  

An evident consequence of F¢lner's Theorem is that  such groups are amenable. 

Another equivalent property that we will use is Day's Fixed-Point Theorem 

on attlne actions. If A is a compact convex subset of a locally convex topological 

vector space, a map T : A --~ A is called af l lne if 

Va E [0,11Vx, y E A T(ax + (1 - a)y) = aT(x) + (1 - a)T(y). 

We say that  G act s  af i tne ly  on A if there is a right action of G on A by afllne 

maps. 
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TREOREM 2.3 [P, TBEOREM 2.24]: A locally compact group G is amenable 
iff every jointly continuous a~ne ace/on o/" G on a compact atllne space has a 
fixed point. 

We turn  now to amenability and co-amenability for group actions (cf. [Gre]). 
Let (S,/Z) be a measure space. A right action of G on S by/z-measurable bijec- 

tions is called n o n s i n g u l a r  if 

VE C s vg • G It(E) = 0 It(Eg) = o. 

For g • G and f : S --* R,  we write R~f  : s ~ f(sg). Thus, a nonsingular action 

of G on (S, it) induces a left action of G on L°°(S, It) by R. ;  we write L~(S ,  It) 
for the subspace of f • L°°(S, It) for which the map g ~ Rg f  is continuous 

from G to L°°(S, #) (the latter having the usual norm topology). A m e a n  on 
OO L o (S, It) is a linear functional m satisfying r e ( l )  = 1 and m > 0; it is i n v a r i a n t  

if rn(Rgf) = ra(f) for all g • G and f • L~(S,  #). 

Definition: A nonsingular action of a locally compact group G on a measure 

space (S, It) is c o - a m e n a b l e  if there is an invariant mean on L~(S ,  It). 

Note that  if G is discrete, then L¢~(S,#) = L°°(S,#). Thus, if a G-action 

is co-amenable when G has the discrete topology, it is also co-amenable in any 

other topology. The left action of G on L°°(S, It) induces a jointly continuous 

L°°rS , ~* This action is aftlne on the compact convex set of right action on G~ ,t 'J • 
means (in the weak* topology), whence, by Day's Theorem, G is amenable iff 

every nonsingular G-action is co-amenable. 

As mentioned in the introduction, the property of group actions analogous 

to the fixed point property of amenable groups is not equivalent to the above 

definition. Let G be a second countable locally compact group with a nonsingular 

action on a standard Borel space S with Borel probability measure p, i.e., on a 

s tandard measure space. The following definitions are taken from [Z2]. Suppose 

that  M is a topological group. A Borel function a : S x G ~ M is called a 

cocy c l e  if 

vg, h • G for It-a.e. ,  • S h) = 

Let E be a separable Banach space and Iso(E) be the group of isometric iso- 

morphisms of E with the strong operator  topology. Let E~' be the closed unit 

ball of the dual of E with the weak* topology and H(E~) the group of home- 

omorphisms of E~ with the topology of uniform convergence. Every cocycle 
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: S x G -* Iso(E) induces an adjoint eoeycle a* : S x G -*  H ( E T )  by 
c~*(s,g) := ( a ( s , g ) - l )  *. A map s ~-* A, assigning to each s E S a non-empty 

compact convex set Ao C_ E~ is called a Borel field if {(s,a); a E A,} is a Borel 

subset of S x E l .  (Standard techniques show that  this is the same as requiring 

the map s H As to be Borel from S to the space of compact subsets of E~ with 

the Hausdorff topology.) A Borel field (Ao) is called a - inva r i an t  if 

Vg for p-a.e, s a *(s ,g)A,  9 = A,;  

in this case, we call (a,  (A.)) an afl tne G-space  over  (S ,# ) .  A p-measurable 

m a p ~  : S ~  E7 is called a sec t ion  of (A.) if f o r p - a . e . s  ~(s) E A,; the 

section is a - inva r i an t  if 

Vg for p-a.e, s ol*(s,g)~(s9) = ~(s).  

Definition: A nonsingular action of a second countable locally compact group 

G on a standard measure space (S,/~) is a m e n a b l e  if every affine C-space over 

(S, #) has an invariant section. 

Zimmer ([Z2, Corollary 1.6] and [Z2, Theorem 2.1], where the assumption of 

ergodicity is never used) shows that  G is amenable iff every nonsingular C-action 

(on a standard measure space) is amenable. The following proposition shows 

how co-amenability is complementary to amenability. It extends and clarifies 

[Z3, Proposition 4.3.3]. 

PROPOSITION 2.4: Let G be a second countabIe locally compact group. Then 

G is amenable i f f  there is some nonsingular G-action on a standard measure 

space which is both amenable and co-amenable. 

Proof'. Let G act nonsingularly on the standard measure space (S, #). We have 

already seen that  if G is amenable, then the action is both amenable and co- 

amenable. Now suppose that the action is both amenable and co-amenable. In 

order to show that G is amenable, it suffices, by [Z2, Proposition 1.5], to show 

that  for every separable Banach space E,  continuous homomorphism zr : G 

Iso(E), and G-invariant compact convex set A C_ Et ,  there is a G-fixed point in 

A. Consider the cocycle 
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and the constant Borel field s ~ A which is, of course, a-invariant. Let ~ be an 

invariant section and let m be an invariant mean on L~(S, #). Set 

fe(s) -- (e,~o(s)) (s E S, e E E). 

We claim that  fe E L~(S,/Z) for all e E E. Indeed, if g E G, then because ~ is 

invariant, 

(ngA)(s) = A( g) = = 

= = = 

whence for g, h E G, 

Ingle(,) - nhf~(,)l = l(Tr(g)e - ~r(h)e, qo(s))] _< ll,~(g)~ - ~(h)~ll 

in light of the fact that ~o(s) E E~. By continuity of % we see that g ~ Rgf¢ is 
continuous as claimed. 

We may now define a 6 E* by 

(e,a) := m(f~) (e E E). 

The Hahn-Banach Theorem guarantees that  a E A. It remains to establish that  

Vg E G ~r(g)*a = a. Now for e E E,  we calculate 

(e, ~r(g)*a) = (~r(g)e, a) = m(f,~(g)e) = m(Rgfe) = m(f~) = (e, a) 

using the observation above and the invariance of m. This completes the proof. 
o 

We now proceed to the next level of generality, that  of measured equivalence 
relations, also called equivalence spaces; we shall consider only countable equiv- 

alence relations. Thus, an equiva lence  space (S,/Z, R) is a standard measure 

space (S,/Z) with an equivalence relation R C_ S x S which is Borel and has the 

property that  each equivalence class is countable. We denote the equivalence 

class o f s E S b y [ s ] .  I f F : R ~ R a n d s e S ,  we write F,  : [s] ~ R for the 

function F,( t )  := f ( s ,  t). A m e a n  on S I R  is a map which assigns to each Is] a 

mean m[, l on £°°([s]); it is said to be / z -measu rab le  if whenever F : R ~ R is 

bounded and Borel, the map s ~ m[,](F,) on S is/z-measurable. 

De~nition [CFW]: An equivalence space (S,/Z, R) is a m e n a b l e  if there is a/Z- 

measurable mean on SIR.  
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If G is a countable discrete group acting nonsingularly on a standard measure 

space (S, p) by Borel automorphisms, then the orbits induce the equivalence 

space (S,p, EG), where (s,t) E EG iff s E tG. It is not true that  co-amenability 

of the G-action implies amenability of EG. However, amenability of the G- 

action (hence amenability of G) does ensure amenability of EG. In order to 

show this, we require an equivalent definition of amenable equivalence space due 

to Zimmer [Z1]. This definition parallels that  of amenable actions, requiring only 

an adjustment in the notion of cocycle. 

Given an equivalence space (S, p, R) and a topological group M, we call a : 

R ~ M a cocycle  if a is Borel and 

v(~, 0 ,  (t, u) e R ~(~, t)~(t, u) = ~ ( s , . ) .  

Again, if M = Iso(E) for some separable Banach space E,  the a d j o i n t  cocycle  

is defined by cr*(s,t):= (a(s,t)-l)  *. A Sorel field (A,) is a - inva r i an t  if 

for p-a.e, t Vs ~ [tl a * ( s , t ) A t  = A,; 

in this case, we call (c~,(A.)) an afflne space  over  (S,p,R). A section ~0 is 

a - inva r i an t  if 

for ~-a.e. t Vs e [t] o,*(s, t)~o(t) = ~o(s). 

Det~nition: An equivalence space (S, #, R) is a m e n a b l e  (in t h e  sense  o f  Zim-  

mer )  if every affine space over it has an invariant section. 

That  amenable group actions induce equivalence spaces which are amenable 

in Zimmer's sense is clear [Z1]. To show that an amenable equivalence space is 

amenable in Zimmer's sense is also fairly straightforward. The converse, however, 
is more difficult. See Appendix 1 for the proofs. 

We shall, in fact, be proving amenability for equivalence relations in a stronger 

sense where no measure is present; such results have applications for every mea- 

sure. These notions are due to Kechris [Kec], who used them to solve a problem 

of Slaman and Steel on definability. Given a (countable) Bore1 equivalence re- 

lation R on a standard Bore1 space S, a mean on S/R is called universally 
m e a s u r a b l e  if it is p-measurable for every Bore1 probability measure, p. 

Definition: An equivalence relation (S, R) is a m e n a b l e  if there is a universally 

measurable mean on S/R. 
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Evidently, every equivalence space formed from an amenable equivalence re- 

lation is itself amenable. Unfortunatdy, the only ways known to produce non- 

trivial amenable equivalence relations depend on assuming the continuum hy- 

pothesis (CH). Nevertheless, if (S, R) is proved to be amenable using CH, then 

(S, ~, R) is still amenable without assuming CH, as shown by standard meta- 

mathematical arguments using forcing and Zimmer's definition of amenability; 

see Appendix 2. 

Often, given an equivalence relation, there is a Borel assignment of structures, 

such as trees, to the equivalence classes. If these structures are drawn from a 

class with special properties, that alone may guarantee amenability. The only 
structures we shall consider are countable graphs, so we present the definitions 

from [A] and [Kec] in this context. 

Detinition: A graphed  equivalence relat ion (S, R, Q) is an equivalence rela- 

tion (S, R) with a symmetric Borel subrelation Q _c R. A g raph  in (S, R, Q) is 

a graph whose vertex set is [s] and edge set is Q r[s] x [s] for some s E S. 

In order to define amenability and co-amenability for a class of graphs, we need 
to parametrize the collection of graphs. Let ~ be the Polish space "2 x "x ' 2 .  

We regard dements 7 E ~ as pairs (V, Q) with V C w and Q c_ ~ x ~ to which 

we associate the graph X7 with vertex set V and edge set Q [3 V x V. Every 

(countable) graph is isomorphic to one of this type. Let X be a class of graphs 
which is dosed under isomorphism. A mean  rn on 2f is a map assigning to 

each X E X a mean m x  on g°°(V(X)), where I;(X) denotes the vertex set of 

X. Such a mean is called invariant  if for all isomorphisms ~r : X --* Y E X 
and all f E g°°(V(X)), rex( f )  = m r ( f  o ~r-1). The mean is called universal ly  

measu rab l e  if for every Borel set B C_ ~ such that 7 E B =~ X. r E X, the map 

F8 : ¢ x ~[-1,  1] --, [-1, 11 given by 

mx(v,q)(f r V) if(V,Q) E B 
FB((V, Q), f )  := 0 if (V, Q) ¢ B 

is universally measurable. 

Definition: A class A" of graphs closed under isomorphism is amenab le  if there 

is a universally measurable invariant mean on X. 

The importance of amenable classes, as alluded to above, lies in the following 

implication [Kec, Proposition 2.6]: 
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PROPOSITION 2.5: I.f ( S, R, Q) is graphed equivalence relation, X is an amen- 

able class of graphs, and each graph in (S,R,Q) belongs to X ,  then (S,R) is 
amenable. 

3. Locally Finite Graphs 

From now on, a g raph  for us will always be nonempty, countable, connected, 
and locally finite, except that subgraphs will be allowed to be disconnected 
when considering percolation. We give graphs the discrete topology and counting 
measure, card, implicitly. The automorphism group of a graph X is denoted Aut 

X and acts on the right. It is given the weak topology generated by the maps 
g ~ zg (x E Y (X) ,  g E AutX), which is a locally compact Polish group topology. 

The most important feature of this topology and the local finiteness assumption 
is that the stabilizer of every vertex is compact. For a closed subgroup G of 

Aut X, we denote the stabilizer of z E X by Gt. This compactness entails 
amenability of the action: 

PROPOSITION 3.1: I f  X is a graph and G is a closed subgroup of AutX, then 
the action o£ G on ( X ,  card) is amenable. Hence G is amenable if[ the action of 
G on (X, card) is co-amenable. 

Proof'. The assertion on co-amenability is a consequence of Proposition 2.4, so it 

remains to establish amenability of the action. Let (a, (Ao)) be an afflne space 
over X. Pick a transversal W of Y ( X ) / G .  For each v E W, pick a~ E A~ 
invariant under the compact group a(v, G,)*. Define ~ : Y(X) ~ E* by 

~(vg) = tr(v,g)'av (v E W, g E C). 

In order to show that ~ is well defined, note that 

o~*(v, g)~* (vg, g-Z) = a "Cv, gg-1) = ct*(v, id), 

whence 
cr*(vg, g - l )  = or(v, g)*¢z*(v, id). 

Therefore, if vg = vh, we see that 

~(v, h)*a~ = ~( ~, h)*~*Cv, hg- ' )~(v,  hg-~)*a~ 

= ~(~, h)*~*(~, h)~*(~h,g-')a~ 

= ct*(vg, g- ' )av  = ct(v, g)*tr*(v, id)a. 

= a(v ,  g)*av, 
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having used that hg -1 , id E G~. Thus ~0 is well defined and, vacuously, Borel. 

Clearly ~ is a section of (Ao), so it remains to demonstrate its invariance. This 
stems from an easy calculation: 

a*(vg, h)~o((vg)h) = a*(vg, h)a(v, gh)*a, = a(v, g)*a. = ~o(vg). 

A general result pointing more in the direction of amenability of groups, rather 

than amenability of actions, is that the growth of Aut X is dominated by that of 

X. The distance,  d(v, w), between v, w E I)(X) is defined to be the minimum 

number of edges in a path from v to w. 

PROPOSITION 3.2: If X is a graph and K is a compact neighborhood of the 

identity in AutX, then 

Vv E Y(X) 3c Vn E N PAutx(K n) <_ PAutx((AutX)v)card B~(cn), 

where B~(r) denotes the ball o~ radlus r centered at v. 

Proof: Given v E 1)(X), vK is compact, i.e., finite, whence c := max0eg d(v, vg) 
is finite. If g l , . . . ,  gn E K, then since Aut X acts by isometries, 

d(vgag2.., gn, v) < ~ d(vgk.., gn, vgk+l.., gn) 
k=l 

t t  

= ~ d(vgk, v) <_ cn. 
k=l 

Thus vK n C_ Bv(cn). For w E vK ' ,  choose gw E K'* so that vgw = w. Then 

whenever vg = w, we have g E (AutX)vgw. It follows that 

PAutx (Kn)<- E PAutx ((AutX)vgw)= E PAutx ((AutX)')  
t v E v K  ~ t v E v K  ~ 

< PAutx((AutX).) .  card B~(cn). 

We say that X is of subexponen t i a l  g rowth  if limiafn--.oo card B~(n) 1/n = 
I for some (hence every) v E ]2(X). In this case, Aut X is also of subexponential 

growth by the above proposition, hence amenable. If X satisfies a stronger 

condition, then there is a "uniform" quality to this amenability: 

PROPOSITION 3.3 [DK]: Assume CH. The class X of graphs X such that 

lim card B,(n)  1/'~ = 1 
n - - ~ O O  

for v E ]2(X) is amenable. 
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For the proof, we require a theorem of Mokobodzki. A mean m on too(V) is 

called un ive r sa l l y  m e a s u r a b l e  if m I v [ - 1 ,  1] is universally measurable. 

MOKOBODZKI'S THEOREM [Mey], [ DM, p. 113]: Assume CH. There are uni- 

versally measurable shift invariant means mz on too(Z) and mN on too(N). 

It is not known whether this can be proved from ZFC alone. We will use mz  

and mN throughout to denote such means, fixed once and for all. 

Proof of Proposition 3.3: Given X • X and v • Y(X), define ¢1i~ : £oo(i)(X)) 
too(N) by 

1 
'~u(f)(n) . -  card Bu(n) E f (w)  

toEBv(n) 

and C :  g°°(N) ~ too(N) by 

Now set 

1 71 

c ( s ) ( . )  := s(k). 
n + l  

k=0 

m x  := mN o C o ~v. 

Given v E l)(X), card B v ( n + l )  card By(n) --* 1 as n --* co along a set of density 

1, whence for w • 12(X) and f • too(12(X)), # v ( f )  - ~w( f )  ~ 0 along a set of 

density 1. Therefore 

C ( ~ v ( f )  - ~,r ( f ) )  ---* 0, 

whence 

mN oC ot)v = m N o C o ~ w ;  

in other words, m x  is independent of choice of v. Thus, m x  is invariant. To 
show that it is universally measurable, note that if (V, Q) 6 fl with X(v,Q) 6 X,  

then for / G w[-1,1],  

mxcv, q)(f  r V )  = m N  o C o ~min v(f  r ¢)" 

Since ((V, Q), f )  ~ @mln V(f  t V), C, and mN are universally measurable, so is 
their composition. [] 
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4 .  T r e e s  

We shall often regard N and Z as trees with edges joining n to n + 1 for all n. 

An e n d  of a tree T is the equivalence class of an isometry Ir : N ~ T under the 

equivalence relation ~r ,,, ~r' ¢6 qrn, n Vl > 0 ~r(rn + £) = ~r'(n + £). The space of 

ends is called the b o u n d a r y  of T and denoted Or. The union T O 0T is written 

T. A topology is given on T which makes it compact. Namely, if S C_ 12(T), 

write S := S O {s E Or/'; q~r E s im(~r) c_C_ S}. Then the neighborhood base for 

s E OTis 

{S; (3K C_ T finite) & (S is a component of T \ K)  & (q~r E s im(~r) C_ S)}. 

A line in T is the image of an isometry from Z into T. Given distinct ends, s 

and t, there is a unique line "joining" s and t which we denote s t .  

A remarkable theorem of Nebbia [N] characterizes amenable subgroups of au- 

tomorphism groups of trees. We shall present a simplified proof of it here. 

THEOREM 4.1 [N]: Let T be a tree and G be a closed subgroup ofAut  T. The 

following are equivalent: 

(i) G is amenable; 

(ii) G leaves invariant a set of cardinality I or 2 in T 

(iii) G leaves invariant a vertex, edge, end, or line. 

Proof: The group G acts affmely on the set of Borel probability measures on Off', 

which ~orm a compact convex set in the weak* topology. By Day's Theorem, 

there is a fixed point, p, if G is amenable. If eard(supp p) < 2, then (ii) is 

evident. If not, consider the set D := {(s , t ,u)  E (0T)3; s # t # u # s} and the 

map p : D ---, l~(T) given by p(s, t, u) = st N tu 0 u*---~. Since supp p has at 

least three points, p3(D) > 0 and so v := (p3 r D)°P  -1 is a nonzero G-invariant 

measure on 12(T). Let 

s := {x e V(T); max 
UEV(T) 

The set S is finite and G-invariant. Its convex hull is a tree whose center is a 

G-invariant set of cardinality 1 or 2. Thus (i) ~ (ii). 
That  (ii) =~ (iii) is evident, so suppose that  (iii) holds. If G leaves a vertex 

or an edge invariant, then G is compact, hence amenable. If an end s is fixed, 

then choose a shift-invariant mean m0 on ~°°(N) and define m E £¢°(1](T))* by 

re( f )  := too(four) for some (hence any) ~r E s. Since s is fixed, m is G-invariant, 

whence the action of G on T is co-amenable. By Proposition 3.1, G is itself 

amenable. Similarly, if a line is invariant, say the image of lr : Z --* T, choose 
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a shift-invariant mean mo on £°°(Z) and define m e too(1](T))* by m(f )  := 

mo(n ~ ½(f(rr(n)) "4- f ( r ( - n ) ) ) ) .  Then m is G-invariant, so a is amenable as 

before, n 

We remark that  Proposition 3.1 can be avoided in this proof by a direct lifting 

of the mean m to an invariant mean on Loo(G) or by using Proposition 4.3 

following. Before proceeding with further analyses of trees, we shall show how 

our proof of Nebbia's Theorem also gives a simple proof of an extension due 

to Woess [Woe] for graphs. In the context of graphs, an inf ini te  p a t h  is a 

monomorphism 7r : N ~ X. Two infinite paths ~', ~" are equ iva len t  if whenever 

K is a finite subset of 12(X), there is a finite path in T \ K  connecting some vertex 

of im(~r) to some vertex of im(Tr'). An end  is an equivalence class of infinite 

paths; the space of ends is denoted OX. The topology for X := X U 0X is as it 

was for trees, which makes X compact. 

There is an alternative definition of the space of ends of X. For any subset 

X0 of the vertices X,  let Ho(Xo) denote the discrete topological space with one 

point for every connected component of the full subgraph of X with vertex set 

X0. Then the space of ends of X may be identified with the inverse limit of 

Ho(X\F) ,  as F ranges over finite subsets of X. 

THEOREM 4.2 [Woe]: Let X be a graph and G be a dosed subgroup of AutX. 

If  G is amenable, then G leaves invariant a finite set in X or a set of cardinality 
1 or 2 in OX. 

Proof." Let D := {(s,t,u) E (0X)3; s # f # u # s}. By definition, for (s,t ,u) E 
D, there is a finite set in I~(X) which separates each pair of s, t, u. Let K(s, t, u) 
be the collection of such finite sets which have minimmn diameter. We claim 

that  K(s, t, u) is finite. If not, then fix K E K(s, t, u) and let Ca, Gt, G,, be 

the components of X \ K  containing s, t, and u respectively. Since OK(s, t, u) 
is infinite, it must intersect infinitely often some ~" E u, say, with im0r ) C_ G,,. 

Choose rr, E s, ~rt E t with im(~,), im(~rt) C_ X\G,,  and 7to(0) = ~'t(0). Every 

path joining im0r ) to im(~rs)O im(~rt) passes through K,  whence OK(s, t, u) has 
points which are arbitrarily far from im(~r,)U im(~rt). Yet every set in K(s, t, u) 
intersects im(~r,) O im(~rt) since it separates s from t, whence K(s, t, u) has sets 

of arbitrarily large diameter, a contradiction. 

Suppose now that  G is amenable and does not leave invariant any set of 

cardinality 1 or 2 in OX. Then as before, there is a G-invariant probability 

measure/~ on OX with support larger than two points. Define the measure v on 
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v(x) by 

f o  cardU 1 v({z} )  := K(s,t,u) lUK(,,,,u)(z) 

This is a G-invariant subprobability measure and 

S : = { x ;  v ({x} )=maxv({y} ) }  
y 

is a finite G-invariant set. 

Returning to trees, now, we note that Nebbia [N] has also shown that  when 

G is not amenable, then G contains a discrete copy of the free group on two 

generators, F2. This is in sharp contrast to the following exceptionally nice 

behavior when G is amenable: 

PROPOSITION 4.3: Let T be a tree and G be a dosed subgroup of Aut T. la t 

G is amenable but not compact, then either 
(i) G/eaves exactly one line invariant and is an extension of a compact normal 

subgroup by Z or by Z2 * Z2, or 

(ii) G leaves exactly one end invariant, ~here is an increasing sequence (Ks)n>1 
of compact open subgroups of G such that each element of G belongs to the 
normalizer of all but finitely many K . ,  and G is the union U . K . ,  possibly 
extended by Z. 

Note that  if 1 --* N / G ~ H ~ 1 is exact, N is compact, and H is Z or 

Z2 * Z2, then for every compact set K C G, there is a constant c such that  

Vn > 1 pat(K") <_ on. 

Indeed, if F := 0(K), then F is finite, so for some c, card F" < cn, whence 

pG(K") <_ pa(O-1(F")) <_ card F n. pc(i(N)) <_ cpG(i(N))n. 

Similarly, if G = U . K . ,  K .  compact and open, then for compact K C_ G, K C 

K .  for some n, whence pa(K") is bounded, while if 1 ~ UK.  -* G ~ Z -* 1 

is exact with K,, as in (ii) above, then for compact K C_ G, F := #(K) is 

finite, whence if O(g) generates Z, there is a J _> 1 with #(g[1,J]) __ F.  We 
have K C__ g[1,11. UK.  = Ug[1,J]K. with g[l'a']Kn open, whence for all large n, 

K C_ g[1,J]K.. Also gKn --- K.,g for all large n by hypothesis, whence for all 

g >_ 1, K t C_ g[~,Jt]Kn. Again, we find that pa(K t) <_ Jpo(Kn)L 
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Thus, closed amenable subgroups of Aut T have at most linear growth, while 

nonamenable ones grow exponentially. We also note that  compact subgroups of 

Aut X for any graph, X,  have a special form, namely, they are inverse limits 

along N of finite groups: Observe that  if G is compact and x E V(X), then xG 

is finite, so that  Gn := G [ (B~(n)G) is a finite group. Clearly G =lira Gn. 

Proof of Proposition 4.3: If G is amenable but not compact, then our proof of 

Nebbia's Theorem shows that  G leaves invariant a set of cardinality 1 or 2 in 

Or/', hence either a line or exactly one end, while not fixing any vertex or edge. 

Suppose that  G leaves a line, 7r(Z), invariant. Let N := G,r(0) N G,r(1), H := G [ 

~r(Z), and 0 : G --4 H be restriction. Then 1 ~ N ~ G o H ---* 1 is obviously 

exact. Now H is an infinite subgroup of Aut (r(Z))  (otherwise G would be 

compact), whence H is isomorphic to either Z or Z2 * Z2. 

Now suppose that  G fixes exactly one end s E OT. For each g E G, there is 

a unique O(g) E Z such that for all 7r E s and all but finitely many k, ~r(k)g = 
~r(k + O(g)). It is clear that  6 is a homomorphism with kernel UnG,~(,) for any 

r E s. Furthermore, the range of 8 is isomorphic to either {0) or Z Finally, 

for any g E G and ~r E s, suppose that ~r(k)g = 7r(k + 8(g)) for k _> k0. Then g 

normalizes G,~(n) for all n >_ lc0. o 

It is reasonable to expect that if Aut T is not amenable, then T cannot be 

too "small." Indeed, it is not hard to convince oneself that,  since Aut T must 

then contain two (free) translations along two lines not sharing any end [N], T 

must contain a subtree which looks like a distorted version of a homogeneous 

tree of degree 3. In fact, this distorted homogeneous tree is the image under 

the free group generated by these two translations of the two lines together with 

the path connecting them. Thus, the set of distances from any given vertex of 

degree three in this distorted tree to its "neighbors" of degree three is always 

the same. In particular, T cannot have subexponential growth, as we knew from 

Proposition 3.3. A much broader notion of "small" tree is as follows. Given T 

and 0 E Y(T), define a metric d on OT by setting d(s, t) = e - "  if there are r E s 

and ~r' e t with ~'(0) = r ' (0)  = 0, ~r(n) = r'(n),  and ~r(n + 1) # ~r'(n + 1). 

Computing the Hausdorff dimension in this metric, we define the b r a n c h i n g  

n u m b e r  of T as [L1] 
br T : =  e dim OT 

This measures the average rate of branching in several senses [L1, L2, LP, L3] 

and is independent of choice of root 0 E I~(T). All trees of subexponential growth 

have branching number 1. Although trees of branching number 1 can have ex- 
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ponential growth, they cannot contain the kind of distorted homogeneous tree 

encountered above, whence they too have amenable automorphism groups. Nev- 

ertheless, this kind of reasoning does not show that a graphed equivalence space, 
almost all of whose graphs are trees of branching number one, is amenable. In 

order to prove this true statement, we require an argument utilizing percolation. 

P e r c o l a t i o n  on a graph X with survival  p a r a m e t e r  p E [0,1] is the process 

of choosing a random subgraph X(w) of X by keeping each edge independently 

with probability p. By Kolmogorov's 0 - 1 law, the probability that X(w) has an 

infinite connected component is either 0 or 1; we define the critical p robab i l i ty  

of Xby  

pc(X) := sup{p > 0; Pv[X(w) has an infinite component] = 0}. 

We shall need the fact that for trees, pc(T) = 1 / b r  T [L1, L3]. Actually, we 
only require this result when br T = 1, which is sufficiently simple to prove that 

we give it here. A translation of the definition [L1] gives that if br T = 1, p < 1, 

and e > 0, then there is a collection II of vertices whose removal from T would 

leave 0 in a connected component of only finitely many vertices and such that 

E pd(0,z) < e. 
zEII 

Therefore if T(w)0 denotes the component of 0 in T(w), 

P , [  card T(w)0 = oo] _< Pp[T(w)0 N n # ~] < Pv[x E T(~)0] 
zEH 

= E pd(O,z) < e, 
zEU 

whence T(w)0 is finite almost surely. Since the choice of root, 0, was arbitrary, 

all components are finite a.s., whence pc(T) = 1, as desired. 

Since the dimension of a denumerable set is 0, the following result implies [A, 

Theorem 5.2, p. 12] and [DK, Propositions 1 and 2]. 

THEOREM 4.4: Assume CH. The class X of trees of branching number 1 is 

amenable. 

Proof." For x E V(T), let T(w)z denote the component containing x of T(w). 

Given T E X, f E e°°(V(T)), and 0 ~ p < I, set 

F(p,/,x) := E, [ f(y)/  card T(w)z 

t yET(w). 
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(Here, card counts vertices.) Given x, y 6 T, the probability that T(w)x = T(w)y 
is the probability that z is connected to !/ in T(w), namely, pd(x,,). Therefore 

(4.1) IF(p, f ,  x) - F(p, f ,  Y)I < 2(1 - pd(x'u))Hflloo. 

In order to define a mean on X, fix a sequence (pn) C_ [0,1[ converging to 1. 

For T E X, set 

mT(f )  := mN(F(p. ,  f,  x)) ( f  E e°°(1)(T))), 

where the choice of x E I~(T) does not matter  by (4.1). It is readily verified that 

m .  is universally measurable and invariant. [] 

As mentioned previously, this result encompasses Proposition 3.3 as far as 

trees are concerned. Of course, the same proof shows that the class of graphs of 

critical probability one is amenable. However, this does not encompass all graphs 

of subexponential growth, not even the square lattice on Z 2, since pc(Z 2) = 

1/2 [Gri]. It would be interesting to find a natural amenable class of graphs 

which includes both those of critical probability one and those of subexponential 

growth. 

From Proposition 2.5 and metamathematical techniques, we may conclude the 
following. 

COROLLARY 4.5: Let (S, R, Q) be a graphed equivalence relation and p be a 
Borel probability measure on S. If  ~or p-a.e, s, the graph associated to [s] is a 
tree of branching number one, then (S, p, R) is amenable. 

It may be worthwhile to record a proof of this corollary which avoids meta- 
mathematics: 

Alternative Proof." The proof consists of applying the basic idea of the proof of 

Theorem 4.4 in the context of affine spaces, weak* limits replacing mN. We shall 

keep the notation of the proof of Theorem 4.4. Let (a, (A°)) be an affine space 

over (S, p, R). Choose [Mos, p. 254] a Borel section f and define ( a ' f ) ,  E £~¢([s]) 
by 

(a * f ) , ( t )  := a*(s, t)f(t) .  

For p E [0, 1[ , define ~op : S ~ E* by 

(e, qp,(s)) := F(p, (e, (a*f),), s) (e e E). 

By the Halm-Banach Theorem, ~0 n is a section of (Ao). For (s,t) E Q, we have 

o~*(8,t)(o~* f)t = (~*f)s, 
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whence 

and so 

(~(~,t)-'~, (ez*f)t) = (e, ( a ' f ) , ) ,  

I(c,~,(~)) - (~ ,  ~*(~,t)~,(t))l = I(~,~,(~)) -(,~(~,t)-'~, ~(t))l  
= IF(p, (e, (o~*f ) . ) , s ) -  F(p, (e, ( a ' f ) . ) ,  t)l 
< 2(1 - pd(. , t))  

by (4.1). In other words, 

(4.2) V(s,t) • R ~ , ( s )  - o : ( s , t ) ~ p ( t )  ~ o as p --, 1. 

Now the subset of sections in L~(S, p; E*) is compact and metrizable in the 

weak* topology [Z2, Proposition 2.2], whence there is a sequence p ,  ~ 1 and a 

section T such that 
tO* 

~pp,~---}cp as n ~ o0. 

We claim that ~ is a-invariant, i.e., 

(4.3) for p-a.e, t Vs • It] ~(s) -- a*(s , t )~(t) .  

To this end, recall the theorem of Feldman and Moore [FM, Theorem 1] that 
there is a countable group G of Borel automorphisms of S which generates R. 

The measure # is automatically quasi-invariant under G. To prove (4.3), it 
suffices to establish that 

(4.3)' Vg • C for p-a.e, s • S 7~(s) = a*(s, gs)~(gs). 

By quasi-invariance of p, we have, for every g • G, 

W* 
~pp. o g --} ~p o g as n ---, oo. 

Now to show (4.3)/, consider any f • LI(S,  p; E) .  We have 

0 = nli_m ./¢{(f(s), ~op. (s)) - (¢x(s, gs) -1 f (s ,  gs), ~op,, (gs))}dp(s) 

fs{(f(s),  ~a(s)) - (a(s, gs)-' f(s, gs), ~p(gs))}dp(s), 

whence (4.3)! follows. 
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We would be very interested to see an analogue of this result for foliations by 

Car tan-Hadamard manifolds. 

Theorem 4.4 has another interesting and, at first sight, surprising consequence. 

We shall say that  a tree T' is obtained from s t r e t c h i n g  a tree T if T ~ is the 

result of subdividing the edges of T by adding more vertices to T (each of the 

new vertices therefore has degree 2). If T has an amenable automorphism group, 

then it is trivial by Nebbia's Theorem to stretch T in an Aut T-invariant way to 

obtain a tree of branching number one - in fact, of arbitrarily slow growth. (For 

the case where Aut T fixes exactly one end, note that  Aut T cannot contain any 

translations along any line joining the fixed end to another end since it would 

then contain an automorphism switching the two ends of the line.) However, 

it is impossible to stretch T this much, even in a random way, if Aut T is not 

amenable: 

COROLLARY 4.6: If  T is a tree whose automorphism group is not amenab/e, 

then there is no automorphism-invariant random stretching of T which yields a 
tree of branching number one with positive probability. In other words, i f  Q is 

the edge set o fT,  P is an Aut T-invariant Borel probability on ON, T(w) is the 

tree obtained from T by adding w(q) vertices to q (q E Q, w EQN), and Aut T 

is not amenable, then br T(w) > 1 P-a.s. 

Proof: We shall prove this with the class of trees of branching number one re- 

placed by any amenable class X of trees whose "intersection" with the parame- 

ter space ~ of Section 2 is universally measurable. (The use of CH in applying 

Theorem 4.4 is eliminated by metamathematics. Alternatively, one may avoid 

metamathematics and Mokobodzki's Theorem by rearranging the proof which 

follows; the implicit use of mN in (4.4) coming from the proof of Theorem 4.4 

is replaced by a Banach limit outside the expectation.) We shall prove that  if 

P[T(w) E X] > 0, then the action of Aut T on 12(T) is amenable, which is suf- 

ficient by Proposition 3.1. Define F ( w ) :  eoo(V(T}) -~ as follows. 

If the edge q = (x,y) is stretched to the path x = x 0 , x l , . . .  ,x~(q),x~(q)+l = y, 
set  

F(w)(f)(z i)  := (w(q) + 1 - i ) f (z )  + i f (y )  ( f  E e°°(V(T))). 
+ 1 

This allows us to define m E e~(V(T}}" by 

(4.4) re(f) : =  E[mT(~}(F(~)(f))IT(~ ) ~ X], 

where m° is a universally measurable invariant mean on X. It is readily verified 
that  m is an Aut T-invariant mean. = 
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Remark: IfT is stretched by adding vertices in an i.i.d, fashion on the edges (i.e., 

P is a product measure on QN with every one-dimensional marginal the same), 

then we may actually calculate br T(w) a.s. By the 0 -  1 law, it is constant a.s., 

and by considering percolation on T(w) (cf. the proof of ILl, Proposition 6.1 or 

6.4]), we see that  br T(w) = )~ a.s., where A > 1 is the solution of 

, b; r 
n_~l 

where p ,  is the probability of adding n - 1 vertices to an edge. 

We shall now examine two other classes of trees to see whether they are 

amenable. Of course, any amenable class can contain only trees with amenable 

automorphism groups. Surprisingly, we find that the bigger the group, the more 

amenable the class, to speak loosely. More specifically: 

THEOREM 4.7: The class Xl of trees with noncompact amenab/e automorphism 
group is amenable assuming CH, but the class X2 of rigid trees (i.e., those with 
triviM automorphism group) is not amenable. 

Proof." By virtue of Proposition 4.3, for each T 6 3:'1, there is a unique end or 

line of T, call it h(T), which is Aut T-invariant. In order to show that  h is 

Borel in a suitable sense, we define the following parameter spaces. Let C :=~w 

parametrize ends with 

e ( v , q ) : = { ~ • e ;  V n • w  ~ ( n ) • V ~ ( ~ ( n ) , ~ ( n + l ) ) • Q  

~ w  • ,,., ,-, # ,-,, ~ ~(,-,) # ~-(,-,-,)} 

for (V, Q) • Q, let £: :=Zw parametrize lines with 

£(v, q ) :  = {~ • £; w • z ~(.) • v (~(~), ~(~ + 1)) • q 

s,:vm • ,,, . # ,-,-, =:. ,~(,-,) # ~-(.-,)}, 

and .4 :=~'w parametrize automorphisms, with 

A(V,Q):={geA;  grV:V,--*  V&(g,g)  tQ:Q,--* O}. 

Let B C ~ be Borel with 7 6 B =~ X. r 6 X1. With  slight abuse of notation, 

h [ B : B ~ £ U £ and, by uniqueness, 

h(7) = ~r ¢* [r • E(7) Yg • A(7) card( im r A  im g o ~r) < oo] 

V [~r • £(7)  & Vg • A(7) im ~r = i m  g o ~r]. 
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Now .A('r) is not only dosed in .A, but a-compact since 

.4(y, Q) = u . e~{g  • ~ (y ,  Q); g(min y )  = n}, 

whence {g • ,4(7); card( im ~r/~ im g o ~r) = oo}, being open in .A(7), is also 

a-compact in .A. Therefore 

{ ( 7 , r , g ) • g x £ x A ;  ~ r • £ ( 7 ) & g • A ( 7 ) &  card( imTrA i m g o ~ r ) = o o }  

is Borel with a-compact sections over g × £, whence [Mos, 4F.16 and 2E.7] 

{ ( 7 , 1 r ) • ; × £ ;  ~ r • £ ( 7 ) & 3 g • A ( 7 )  card(im~r A i m g o T r ) = ~ }  

is Borel. Thus 

{(7, ~r) • G x £; ~r • £(7) & Vg • A(7) card( im ~r A im g o 7r) < oo} 

is also Borel. Similarly 

{(~, ~) • ~ x £; ~ • z (v )  & vg • ~t(~) im ~ = im g o ~} 
is Borel. Therefore h [ B has a Borel graph, whence [Mos, 2E.4] h is Borel, 

as desired. By using mN if h(T) is an end and mz if h(T) is a line, it is easy 
to construct a universally measurable invariant mean on k'l (cf. the proof of 

Theorem 4.1). 
On the other hand, let T be a homogeneous tree of degree 4 (say). Since 

it contains a discrete copy of F2 (T being the Cayley graph of Fu), Aut T is 

not amenable. Consider the random stretching of T which adds, independently 

to each edge, 0 or 1 vertices with equal probability. In view of the proof of 

Corollary 4.6, it suffices to show that the stretched trees T(w) are a.s. rigid. 

Let T denote the set of subtrees of T all of whose vertices have degree 4 except 

one, which has degree 3. Any nontrivial automorphism of T moves some line 
to a distinct line and hence establishes an isomorphism between some pair of 

disjoint elements of T. Furthermore, for any w, every nontrivial automorphism 
of T(w) induces a nontrivial automorphism of T. Since T is countable, it suffices 

to show that for disjoint T1,T2 • 7",T~(w) and T2(w) are a.s. non-isomorphic 

(where Ti(w) are the induced subtrees of T(w)). Let xi be the vertex of Ti of 

degree 3 and y[ be the vertices in Ti adjacent to xi (i = 1, 2, j = 1, 2, 3). Let p 

be the probability that T1 (w) and T2(w) are isomorphic. Any isomorphism must 
carry zl to z2 and {y~} to {y~}. There are 6 possible bijections of {y~} with 

{y21} and any isomorphism of Tl(w) with T2(w) which induces a given one of 

these bijections must match edges (xi, yJi) with the same stretching, which has 

probability 1/8, and must also induce isomorphisms of the subtrees following y[, 

which has probability pS. Hence p < 6pS/8, whence p = 0. v 
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5. Ac t ions  o f  Fundamenta l  Groups  on Trees 

Let G be a connected, noncompact, almost simple Lie group with finite funda- 

mental group. Let M be a closed, real analytic manifold with a real analytic 
connection and a smooth volume. Assume that G acts real analytically on M 

preserving the connection and volume. Assume that the action is nontrivial. Let 

F denote the fundamental group of M. 

Recall that the R- rank  of G is the dimension of a maximal R-split torus 

in the algebraic R-group Ad(G). The group G is said to have K a z h d a n ' s  

p r o p e r t y  (T)  if any unitary representation which almost has invariant unit 

vectors actually has invariant unit vectors [Z3, Definition 7.1.3, p. 130]. It is 

known that R-rank _> 2 implies Kazhdan's property (T). 

In [Gro, Theorem 6.1.B], Gromov proves that the universal covering action of 

on h?/is proper (in the sense of measure theory). This result has been used 

by Zimmer to prove many results, among them: 

THEOREM 5.1 [Z4, Theorem 7.1, p. 211]: Assume that G has Kazhdan'sprop- 

erty (T). Then F is not isomorphic to the amalgam of two finite groups over a 

common subgroup. 

In particular, F # SL(2, Z), because SL(2, Z) is the amalgam of Z/4Z with 

Z/6Z over Z/2Z. 
Now, a continuous action of a topological group G on a topological space V 

is said to be p r o p e r  if for every compact set V0 C V, there exists a compact 

K C G such that, for every g E G\K,  we have gVo f3 Vo = $. Here we show how 
the ideas in Zimmer's proof of the above result can be modified to show that F 

cannot act properly on a tree: 

THEOREM 5.2: Assume that G has Kazhdan's property (T). Let F act on a 

tree T by tree automorphisms. Give the vertices V of T the discrete topology. 

Then the action of F on V is not proper. 

This result generalizes Theorem 5.1 by virtue of [S, §4, Theorem 7, p. 32]. It 

implies that F is not isomorphic to a discrete group of the automorphism group 

of a tree. 

A group r is said to have Serre ' s  p r o p e r t y  (FA) if whenever F acts on a 

tree, it fixes a vertex or an edge IS, p. 58, 1.+12]. Watatani [Wat] has shown that 

Kazhdan's property (T) implies Serre's property (FA). Under the assumptions 

of Theorem 5.2, the group r need not have property (FA), since one may take 
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any example of G and M, then replace M by M x S 1, letting G act trivially on 

the circle S s . 

On the other hand, if one imposes the condition that the action of G on M 

be measure-theoretically engaging [Z4, Definition 3.1, p. 205], we know of no 

example where F does not have property (FA). However, even in this case, the 

group need not have Kazhdan's property (T); see [Z4, p. 210, 1.+4 to 1.+11] and 

cf. [Z4, Proposition 6.1, p. 210]. 

Note that a group without proper tree actions does not necessarily have Serre's 

property (FA): Let As be any infinite group with property (FA) and let A2 be 

any nontrivial group. Then As * A2 does not have Serre's property (FA) and has 

no proper tree actions. 

Theorem 5.2 is analogous to a result of Spatzier and Zimmer: 

THEOREM 5.3 [SZ, Theorem A]: Assume that G has R-rank >_ 2. I f  O < a < b, 

then F cannot act properly on a simply connected complete R/emannian manifold 

with sectional curvature satisfying - b  2 <_ K <_ - a  2. In particular, M cannot 

carry a metric of  negative curvature, o 

This theorem has some overlap with Theorem 5.2. For example, when G has 

R-rank _> 2, they both imply that F cannot be isomorphic to SL(2, Z). 

In Theorem 5.3, it is not possible to weaken the assumption of R-rank _> 2 

to Kazhdan's property (T): If G = Sp(1, n), F is a cocompact lattice in G and 

M = G/F, then F acts properly on quaternionic hyperbolic space, which has 

curvature bounds - 1  <_ K _< -1 /4 .  

Spatzier and Zimmer's proof is quite involved. Using an ergodic-theoretic 

analogue [AS, Theorem 2.3, p. 276] of Watatani's theorem, we obtain a relatively 
simple proof of Theorem 5.2. 

Our method works whenever F acts (properly) on a space with a proper, weakly 

negative semi-definite kernel and a barycenter process. In particular, by [FH, 

Proposition II.7.3, p. 205], we can recover the result of Spatzier and Zimmer in 

the special case where 0 < a = b, i.e., a simply connected manifold of constant 

negative curvature. Similarly, by [FH, §II.7.4, p. 211], we see that F cannot 

act properly on complex hyperbolic space. We can also prove that F cannot a~t 

properly and isometrically on a flat Euclidean space. However, our result only 

requires that the group acting have Kazhdan's property (e.g., Sp (1, n), n _> 2, 
and F4-2°), not that it have higher (real) rank. We summarize some of these 

remarks as follows: 
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TItEOREM 5.4: Assume that G has Kazhdan's property (T).  Then the ftmda- 

menta /g roup  of M is not isomorpb_/c to a discrete subgroup of SO(1,n) or of 

SU(1, n) for any n >_ 1. In particular, M does not admit a tea/hyperbol ic  or 

complex hyperbolic metric, n 

Zimmer has noted that  this result may also be proved using [Z5, Theorem 10, 

p. 427], [Gro, Theorem 6.1.B] and elementary facts about cocycles. 

In Theorem 5.2, we are taking "tree" to mean "countable, simplicial tree". (We 

need not assume that  the tree is locally finite.) However, since an R-tree has a 

negative definite kernel (given by distance) and a barycenter process, Theorem 

5.2 is true for R-trees as well. 

Proof  of Theorem g.2: Assume for a contradiction that  F acts properly on the 

discrete topological space V. 
In [Gro, Theorem 6.1.B], Gromov shows that the action of G on ~ / i s  "proper 

in the sense of measure theory", i.e., there is a measurable map .~/ ~ [0, 1] 

such that  a.e. fiber is a G-orbit with compact stabilizer. In particular, b y  

disintegrating the smooth measure on/V/, we see that  any G-invariant set in 

must have measure 0 or oo. 

Let zr : G --* G denote the natural map. Let G act on M by ~m = 7r(~)m. 

Fix a measurable fundamental domain for the action of F on/V/. This induces 

a measurable trivialization of/~r  ~ M as the projection map M x r ~ M. 

The resulting G-action on M x F is given by ~(m, 7) = (~m, a(~, m)7), for some 

cocycle a : G × M ~ F. 
The group G acts on the associated bundle j~r x r  V ---* M, and the measurable 

F-equivariant bijection o f / ~ / o n t o  M × F induces an identification of ~ / x r  V 

with M x V. Then G acts on M x V via ~(m, v) = (~m, a(~, re)v). 

By [AS, Theorem 2.3, p. 276], there exists a measurable a-invariant field 

of non-empty convex bounded subsets of V parametrized by M. Applying the 

barycenter (or "pruning") process to all of these convex bounded subsets, we 

arrive at a G-invariant measurable subset F C_ M x V such that  a.e. fiber of 

F ~ M has one or two elements. 

We think of M x F and of M x V as measure spaces, where M has its smooth 

volume and where F and V are given counting measure. Then the measurable 

identification oi" M with M x F is measure-preserving. Further, since a.e. fiber 

of F --* M has one or two elements, we conclude that  F has positive, finite 

m e a s u r e .  

Choose v0 E V such that  F0 := F N (M x Fv0) has positive measure. Let 

~b : 2~ r ~ M x r  Y denote the composite of the map m ~ (m, vo) : .~I --* .~I x V 
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followed by the natural  map 2V/ x V --* J~ /xr  V. The identifications of .~f 

with M × F and of 2t7/×r V with M × V allow us to identify ¢ with a map 

¢ : M × F -* M × Y. This map is given by ¢ (m,7 )  = (m,7v0). 

As ~b is G-equivariant, so is ¢. Consequently, M × Fv0 = ¢ ( M  x F) is G- 

invariant. Then F0 is the intersection of two G-invariant sets; it is therefore 

G-invariant. It is also of positive, finite measure. 

Let n denote the cardinality of the stabilizer in F of v0. Since F is proper on 

V, it follows that  n < ~ .  The map ¢ : M × F --* M × Fv0 is n-to-1 and behaves 

well with respect to measure in the following sense: if a subset S C M × Fv0 has 

measure a, then ¢-1(S)  has measure ha. Consequently, ¢-1(F0) has positive, 

finite measure. By G-equivariance of ¢, we find that ¢-1 (F0) is also G-invariant. 

Finally, the identification of 2Q with M × F is measure-preserving and G- 

equivariant. Thus ¢-1 (F0) corresponds to a G-invariant subset in J~/with posi- 

tive, finite measure. This contradicts Gromov's theorem, o 

A p p e n d i x  1 

Here we show the equivalence of the two definitions of amenable equivalence 

spaces given in Section 2. 

Suppose, to start,  that  we are given an amenable equivalence space (S,/l, R) 

in the first sense (not Zimmer's). For any affine space (a, (A.)) over (S,/I,R), 
choose (by [Mos, p. 254]) a Borel section g and a/l-measurable mean m on SIR. 
For e 6 E,  the function F ( e ) :  R ~ R defined by r(e)(s, t)  := (e,a*(s,t)g(t)) is 

Borel, whence the map T : S --* E[  defined by 

(e, %o(s)) := mbl(F(e), ) 

is/l-measurable. In view of the Hahn-Banaeh Theorem, ~ is a section of (A°). 

It remains to show that  ~ is a-invariant. Now for (s, t), (t, u) 6 R and e 6 E, we 

have 

F(a(s, t) -1 e)(t, u) = <a(s, t) -1 e, a*(t, u)g(u)> 

= <~, ~*(s, t)~*(~, u)g(u)> = <~, ~*(s, u)g(u)> 

= F(e)(s,  u), 

whence 

F ( ~ ( , ,  0 - '  ~), = F(~) , .  

Since [s] = [t], we obtain 

(e, a *(s,  t)~o(t)) = (a(s ,  t ) - '  e, ~( t ) )  = m t , l ( f ( a ( s ,  t) -1 e) , )  = m t , l ( f ( e ) ,  ) 

= (~, ~(s ) ) ,  
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which is to say, ~ is a-invariant. Thus, the equivalence space is amenable in 

Zimmer's sense. 
Conversely, let (S,p,  R) be an equivalence space which is amenable in the 

sense of Zimmer. Our first step is to show that  there exists a "global" right- 

invariant mean on R in the sense of [CFW, Definition 5, p. 437]. This is done 

in [Zl, Proposition 4.1 (ii), p. 30]. In part (i) of that  proposition, an ergodieity 

assumption is made. In fact, in [Z1], amenability is only defined for ergodic 

actions and ergodic equivalence relations. However, ergodicity is never used. The 

proof of [Z1, Proposition 4.1] proceeds via hyperfiniteness of the yon Neumann 

algebra of the action or equivalence relation. We shall sketch a direct proof 

below. 

The second step is to apply the main result of [CFW] to conclude that  there 

exists a conull, Borel, R-invariant subset So C_ S and a Z-action on So such that  

the equivalence classes of R0 := R I So are exactly the orbits of this Z-action. 

Let #0 := p I So. Since Z is an amenable group, it follows that  there is a #0- 

measurable mean on So/Ro. Since So is conull, any extension of this mean to 

SIR will be p-invariant. 
We now describe the direct proof of the first step. 

PROPOSITION: If (,9, #, R) is amenable in the sense of Zimmer, then there is a 
right-invariant mean on R in the sense of [CFW, Definition 5, p. 437]. 

Sketch of Proof: By [FM, Theorem 1, p. 291], there is a countable group G of 

Borel automorphisms of S such that the equivalence classes of R are the orbits 

of G. By ordering G, we may choose a Borel map ff : R ~ N such that,  for 

every s E S, the map @,: [s] ~ N given by ff ,(s ')  := if(s, s') is bijective. Define 

a : R --* Perm(N),  where Perm(N) denotes the p e r m u t a t i o n  g r o u p  of N,  by 

~(s, s') := ~ ,  o ~;;1. 
Put the product of # and counting measure, # × card, on S × N. If A E 

L°°(S × N), then we will say that  A is a - lnva r i an t  if, for #-a.e. s E S, for all 

s' E [s], we have A(s, n) = A(s', a(s', s)n). 
For every A E L°°(S x N), for every g E G, let Tg(A) E L°°(S x N) be defined 

by Tg(A)(s,n) = A(g-ls,  a(g-ls ,  s)n). For every A E L°°(S x N), for every 

f 6 L°°(S), let UI(A ) 6 L°°(S x N) be defined by UI(A)(s , n) = f(s)A(s, n). 
Give B := B(L°*(S x N)) the a(B,L°°(S x N)®maxLl(S x N))  topology, a 

weak* topology. Let X denote the closure in B of the set of operators of the form 

~ = 1  T~, o UI, , where g l , . . .  ,gn E G and f l , . . .  , fn E L°°(S) are nonnegative 

and satisfy fl  + " "  + fn = 1. Then X is a semigroup, by the argument of [Z1, 

p. 27, 1.+12 to 1.+18]. Give X the inherited topology from B; this makes X 
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compact. The elements of X are "left rearrangement operators" in the sense 

that  each one takes a function on S x N, breaks it down by a partition of unity 

from S, moves the pieces around (using elements of G and the cocycle a),  then 

reassembles the pieces. 

Since R is amenable, we may mimic the argument in [Zl, Lemma 2.3, pp. 25- 

26] to conclude that  for every A • L°°(S x N), XA := {VA; V • X} contains 

an a-invariant element. ([Z1] uses Cs(A) to denote what is here denoted XA; it 

is just the set of "left rearrangements of A".) 

Note that  if A • L°°(S x N) is o~-invariant, then XA = {A}. For A • 

L°°(S x N), write 

XA := {V • X; VA is a-invariant}. 

Then XA is non-empty and closed. Furthermore, if A1, . . .  ,A,, • L°°(S x N), 

choose V1 • XA1 and, for k = 2 , . . .  ,n,  Vk • XYh_l...YlAk. Then 

n 

VnV,-1... V~ • NxA, ,  
i=l  

whence {XA} has the finite intersection property. Therefore 

3W • N XA. 
AEL°°(SxN) 

Fix any A E L°°(S x N). Then WA is a-invariant. It follows that,  for/~-a.e. 

s • S, for every sl, s" • [s], we have 

(WA)(s', ¢(s', s)) = (WA)(s", O(s", s)). 

Give R the measure class described in [CFW, p. 434, 1.+12 to 1.+19]. Fix a E 

L°°(R). Define A E L°°(S x N) by A(s, n) := a(s, ~-;l(n)). Define ~ E L°°(S) 
by ~(s) := (WA)(s ,¢ (s , s ) ) .  Then a ~ ~:  L~°(R) --* L°°(S) is a right-invariant 

mean in the sense of [CFW, Definition 5, p. 437]. o 
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A p p e n d i x  2 

We shall outline how metamathematics can be used to eliminate the use of CH 

in statements about  standard measure spaces. We shall restrict ourselves to 

theorems whose conclusion is that (S, #, R) is amenable, which should suffice for 

illustrative purposes. By JR, Proposition 15.12, p. 407], we may assume that 

S = [0, 1]. We suppose that the hypotheses form a projective formula, i.e., that 

they can be expressed using quantifiers over [0, 1] but  not over the power set of 

[0, 1] or any higher order object. Then it suffices to show that "([0, 1], #, R) is 

amenable" is also projective. This is because of the following folklore theorem. 

THEOREM: / f  0 is a projective sentence and is a theorem of ZFC+CH, then 0 

is a theorem of ZFC. 

Proof." It suffices to show that 0 is true, i.e., is satisfied in any model, .M, of ZFC. 
The method of forcing gives an extension, .M I, of .£4 in which CH is satisfied 

but  which has the same set for [0, 1]. Since 0 is satisfied in .M' by hypothesis 

and 0 is projective, it follows that 0 is satisfied in At. a 

To show that "([0, 1], p, R) is amenable" is projective, we first demonstrate a 

well-known universal embedding of separable Banach spaces. 

PROPOSITION: I f  E is a separable Banach space, then there is an isometric 

isomorphism o r e  onto a dosed su~space of C(~(O, 1}). 

Proof." Since E is separable, the topology of E~ is metrizable and, of course, 
compact. Therefore, there is a continuous surjection ~r : w{0, 1} ---* E~. The 

isometry desired is e ~-* (x ~-* (e, lr(x))), o 

Because of this, we may use the fixed space C( ' {0 ,  1}) in place of arbitrary 

separable Banach spaces E in checking the definition of amenability in the sense 

of Zimmer. Now there is a projective set in [0, 1] which is universal for the class of 

Borel sets in a Polish space [Mos, 1E.3, p. 43], whence there are projective sets F ,  

C, and ¢ parametrizing the Borel fields in C( ' {0 ,  1})~ over [0, 1], the cocycles 

from R to Iso(C(~'{0, 1})), and the Borel maps from [0, 1] to C('~{0, 1})~, 
respectively. We shall identify the parameter sets with their respective objects. 

Thus, the statement that ([0, 1], #, R) is amenable is equivalent to 

V A E F  V a E C  {( for t,-a.e, t V, e [t] ~*(, ,t)A, = A,) 

=~(3~oE~ [( for #-a.e. sE[O, 11 ~(s) EAs) 

&( for/z-a.e, t Vs E [t] a*(s,t)~p(t) = ~(s))]}. 



Vol. 75, 1991 AMENABILITY 369 

It remains simply to show that the occurrences of " for p-i.e, t .- .  " can be 
replaced by projective formulae. Indeed, in the above case, one can use 

Vn 3 K  e K([0, 11) Vf  e C([0, 11) {[(f < 1 & f [ K - =  0) =~ f f  dp < I/n] 

& V t e K  . . .  }, 

where K[0, 1] is the space of compact subsets of [0, 1] in the Hausorff metric. 

Note that the condition "[(f  < 1 . . .  <_ 1/n]" appearing above is closed in 

g[0 ,  1] x C[0, 1]. Finally, K[0, 1] and C[0, 1], being Polish, can be replaced by 

the irrationals in [0, 1] for purposes of quantification. 
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